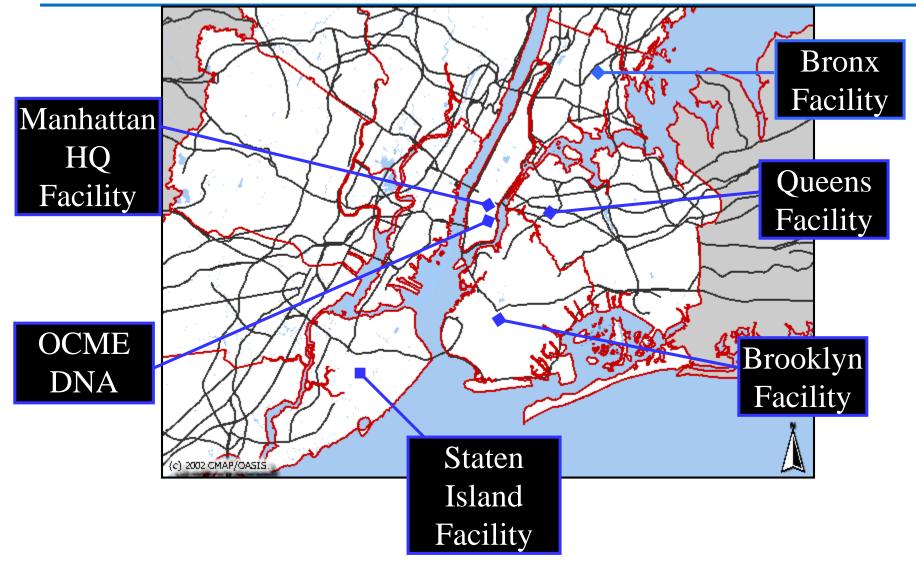


Using the Molecular Autopsy to Understand Sudden Cardiac Death

Barbara Sampson, M.D.-Ph.D. Chief Medical Examiner City of New York

- 1.Define sudden cardiac death and describe which deaths are most appropriate for molecular testing.
- 2.Explain the current techniques and analysis available for the molecular autopsy, including their limitations.
- 3. Integrate the results of the molecular autopsy into the final determination of cause and manner of death and family counseling.

- I have no disclosures.

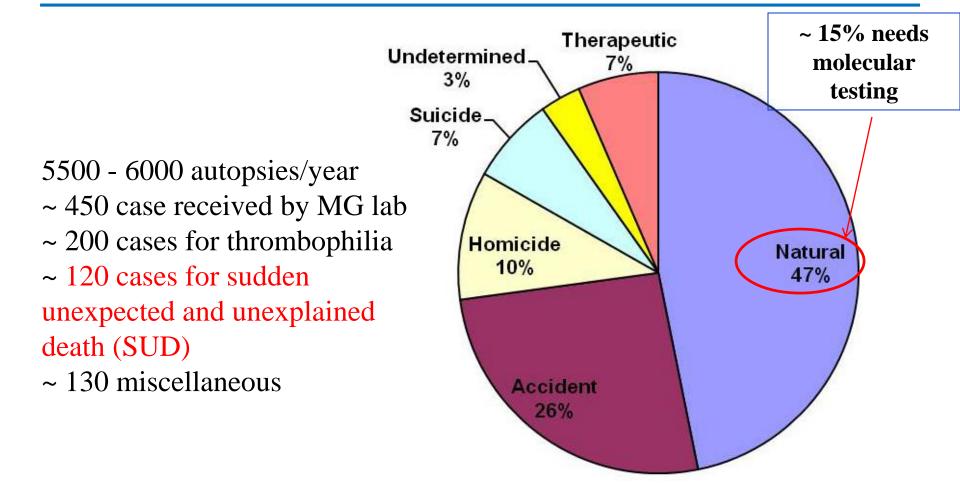

Mission NYC OCME

Responsible for investigating deaths resulting from:

- Criminal violence
- Accident or suicide
- or when death is:
 - Unattended by a physician
 - Sudden and decedent is in apparently good health
 - Suspicious, or occurs in an unusual manner
- or when death occurs:
 - In a correctional facility or in custody
- the OCME also investigates:
 - Case that may present a threat to public health
 - Applications to perform cremation

Hirsch Center for Forensic Sciences

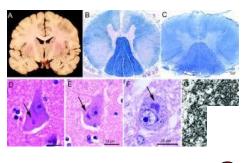
- Dept. of Forensic Biology
- OCME Admin Offices
- Molecular Genetics Laboratory


Services Currently Provided by Molecular Genetics Lab

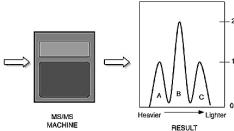
- Mission Provides high quality, timely, and cost-effective molecular diagnostic services to assist the NYC medical examiners in the determination of the cause of death; Provides on-site professional genetic counseling to families of decedents (since July 2016)
- Molecular diagnostic tests:
 - Inherited Cardiac Arrhythmias and Cardiomyopathies Molecular Analysis
 - Thrombophila Molecular Analysis (FVL and FII)
 - Sickle Cell (SC) Disease Molecular Analysis
- Archiving the autopsy specimens for future testing
- Sending out specimen to external testing labo

NYC OCME Cases by Manner of Death

OCME Death Investigation Protocol of SUD

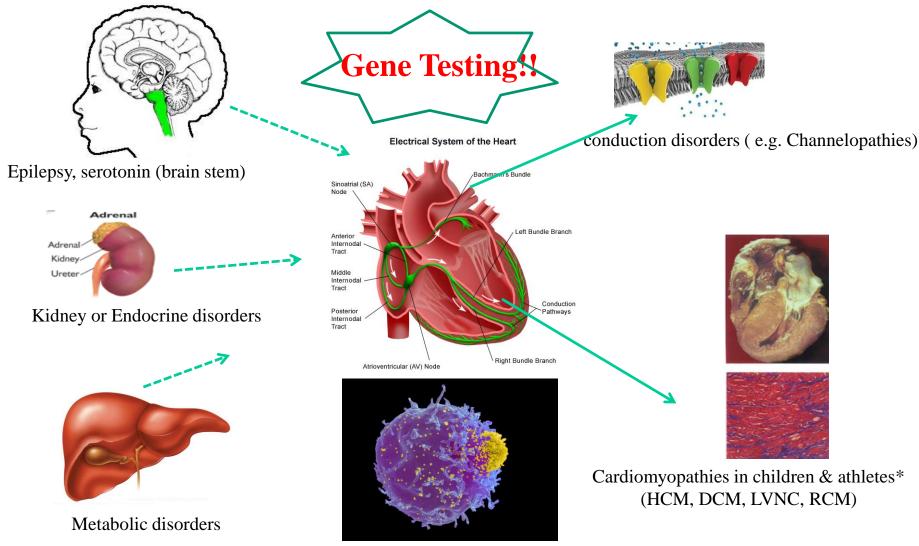

Toxicology/chemistry

Autopsy



Pathological Exam

Microbiology


Cause of Death Unexplained

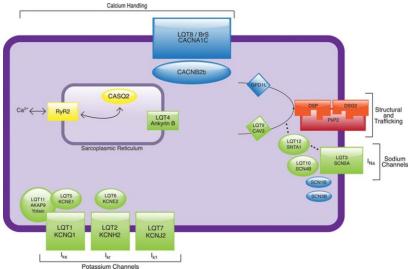
Metabolic Screening

BLOOD

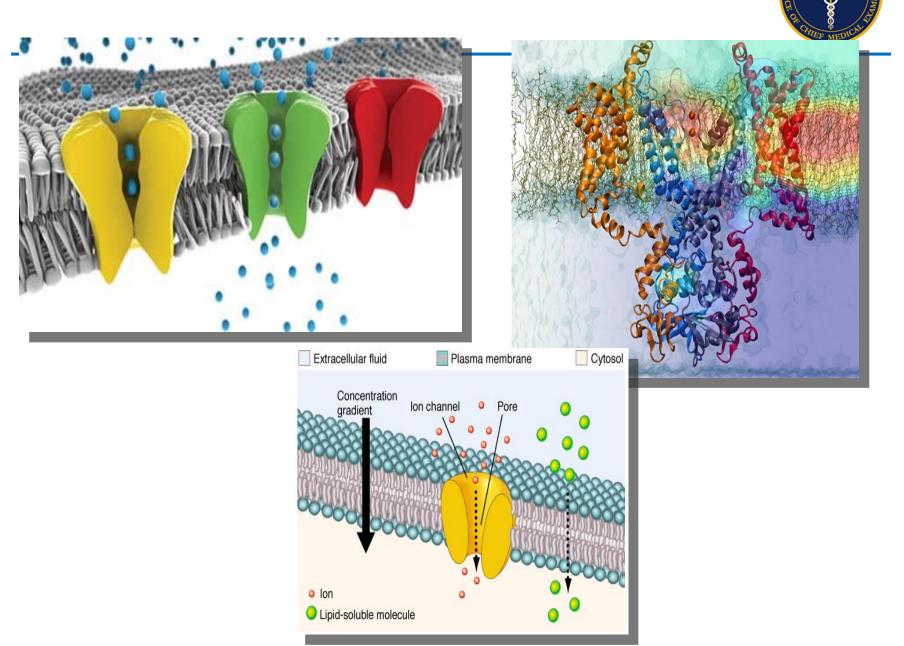
Etiologies of Cardiac Arrhythmia

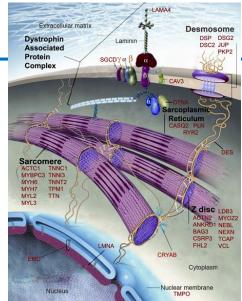
Immune system disorders

Background on 95-Cardiac-Gene Panel

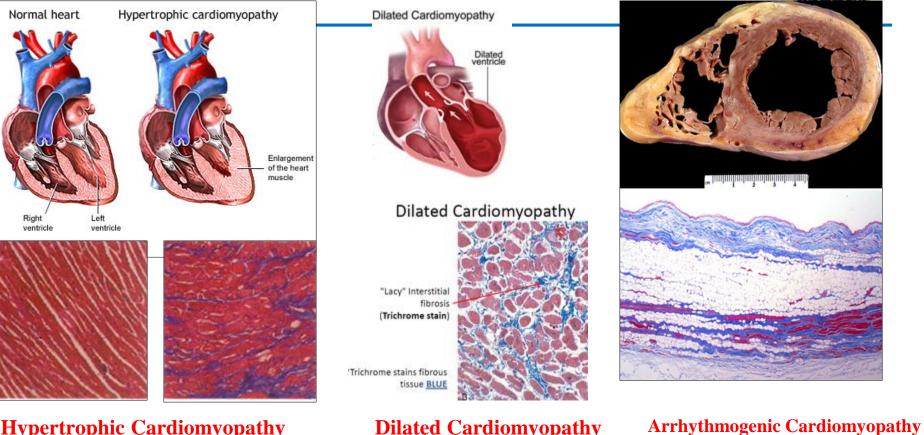


Diseases	Gene Names			
Cardiac Channelopathy/Conduction System Disorders (LQTS, Brugada syndrome, SQTS, CPVT, VF)	ABCC9,AKAP10,AKAP9,ANK2,ARHGAP24,CA CNA1C,CACNA2D1,CACNB2,CALM1,CALM2,C ASQ2,CAV1,CAV3,DPP6,GJA1,GJA5,GPD1L,H CN4,KCNA5,KCND2,KCND3, KCNE1 ,KCNE1L, KCNE2, KCNE3,KCNE4, KCNH2 ,KCNJ2,KCNJ5, KCNJ8, KCNQ1 ,NPPA,PRKAG2,RANGRF,SCN1 0A,SCN1B,SCN2B,SCN3B,SCN4B, SCN5A ,SLM AP,SNTA1,TRDN,TRPM4			
Cardiomyopathy (HCM,DCM, LVNC, ARVC)	ACTC1,ACTN2,ANKRD1,BAG3,CALR3,CRYAB, CSRP3,CTF1,DES,DSC2,DSG2,DSP,DTNA,EM D,FHL2,GATAD1,GLA,JPH2,JUP,LAMA4,LAMP 2,LDB3,LMNA,MYBPC3,MYH6,MYH7,MYL2,MY L3,MYLK2,MYOZ2,MYPN,NEBL,NEXN,PKP2,P LN,PRDM16,PTPN11,RBM20 ,RyR2 ,SGCD,TAZ, TCAP,TGFB3,TMEM43,TMPO,TNNC1,TNNI3,T NNT2,TPM1,TTN,VCL			


Cardiac Channelopathy Genes


Disease	# Gene	Gene Name
LQT	15	AKAP9, ANK2, CACNA1C, CALM1, CALM2, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNJ5, KCNQ1, SCN4B, SCN5A, SNTA1
SQT	3	KCNH2, KCNQ1, KCNJ2
Brugada	15	ABCC9, CACNA1C, CACNB2, GPD1L, KCND3, KCNE3, HCN4, KCNJ8, RANGRF, SCN10A, SCN1B, SCN3B, SCN5A, SLMAP, TRPM4
CPVT	4	CASQ2, KCNJ2, RyR2, TRDN
AF	14	ABCC9, GJA5, KCNA5, KCNE1L, KCNE2, KCNE4, KCNJ2, KCNQ1, NPPA, SCN1B, SCN2B, SCN3B, SCN4B, SCN5A
Conduction, Other	9	AKAP10, ARHGAP24, CACNA2D1, CAV1, DPP6, GJA1, KCND2, TRPM4, PRKAG2

Voltage Gated Ion Channels


Cardiomyopathy Genes

Disease	# Gene	Gene Name
HCM	29	ACTC1, ACTN2, ANKRD1, BAG3, CALR3, CAV3, CSRP3, JPH2, LAMP2, LDB3, MYBPC3, MYH6, MYH7, MYL2, MYL3, MYLK2, MYOZ2, MYPN, NEXN, PLN, PRKAG2, RyR2, TCAP, TNNC1, TNNI3, TNNT2, TPM1, TTN, VCL
DCM	39	ABCC9, ACTC1, ACTN2, ANKRD1, BAG3, CRYAB, CSRP3, CTF1, DES, DSC2, DSG2, DSP, EMD, FHL2, GATAD1, LAMA4, LAMP2, LDB3, LMNA, MYBPC3, MYH6, MYH7, MYPN, NEBL, NEXN, PKP2, PLN, RBM20, SCN5A, SGCD, TAZ, TCAP, TMPO, TNNC1, TNNI3, TNNT2, TPM1, TTN, VCL
ARVC	10	DES, DSC2, DSG2, DSP, JUP, PKP2, RyR2, TGFB3, TMEM43, TTN
LVNC	11	ACTC1, DTNA, LDB3, LMNA, MYBPC3, MYH7, PRDM16, TAZ, TNNT2, TPM1, VCL
RCM	6	ACTC1, BAG3, DES, MYH7, TNNI3, TNNT2
Other	2	GLA, PTPN11

Cardiomyopathies

Hypertrophic Cardiomyopathy (HCM)

> David Zieve, MD et al; Allen Patrick Burke, MD, et al.

(AC)


Dilated Cardiomyopathy (DCM)

Testing Methodology

- Postmortem tissues preserved in RNA*later*®; bloodstain cards for DNA extraction
- Target gene enrichment (Haloplex) and Sequencing by Illumina Miseq
- SOFTGENETICS software (NextGENe, Geneticist Asistant)
- Sanger Sequencing low coverage regions and variant confirmation

• ACMG Guidelines

Clinical databases: ClinVar, HGMD, ARVD Publications: pubmed search MAF in 1000 genome, ESP6500, ExAC, gnomAD In silico prediction: PP2, SIFT/proven, MutationTaster Cardiac pathological findings

Benign/likely benign Clinical Databases classified Or, MAF >0.5%, and predicted as "benign" by multiple in silico analyses, >3 internal cases

VUS (Variant of Uncertain Significance)•Neither benign nor pathogenic

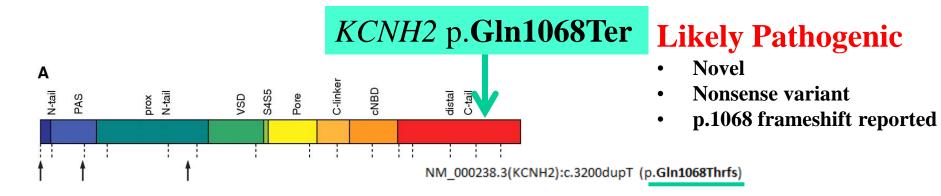
Pathogenic/likely Pathogenic

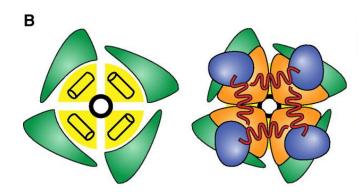
- Clinical Databases classified with strong evidence
- loss of function variants
- novel, or ultra rare MAF <0.04%, and predicted as "deleterious", and correlating phenotype (long QT, cardiac findings)

Case 1 - a *de novo pathogenic* variant in the LQT2 gene

Case 1 – Case Info and Testing Results

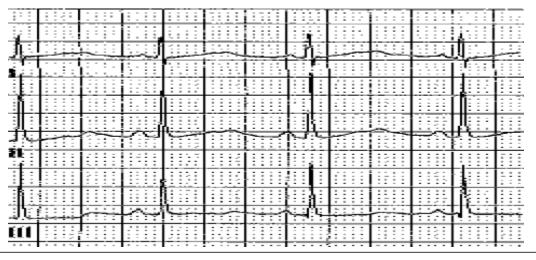
- 18y, Asian, female college student was found dead in her bedroom
- Negative autopsy, tox, microbiological tests, etc.
- Panel of Molecular Analysis of 95 Cardiac Genes


Results:

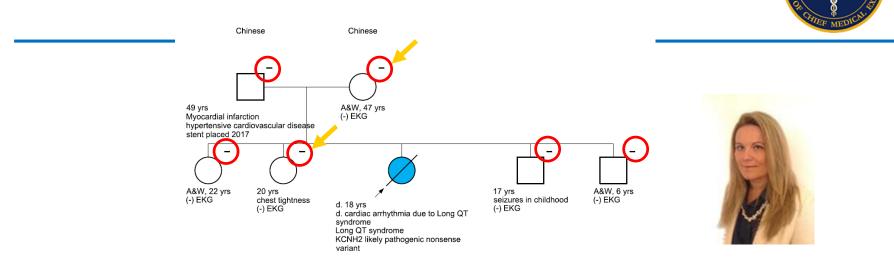

- Total # Benign variants: 182
- Total # VUS variants: 1
- Total # Likely Pathogenic: 1

	Results Table						
Gene	Variant (cDNA, genome on Assembly GRCh37)	Variant (protein)	Zygosity	Classification			
KCNH2	NM_000238.3:c.3202C>T g.7:150644093G>A	NP_000229.1: p.Gln1068Ter (nonsense variant)	Heterozygous	Likely Pathogenic			
CACNA2D1	NM_000722.2:c.2070T>G g.7:81601164A>C	NP_000713.2: p.Ile690Met (missense variant)	Heterozygous	Variant of Uncertain Significance (VUS)			

Case 1 - Variant Interpretation


HERG protein encode by KCNH2 gene Total 1159 amino acids

Feb 24, 2017: initial ECG March 24, 2017: stress test April 14, 2017: missed f/u May 14, 2017: died

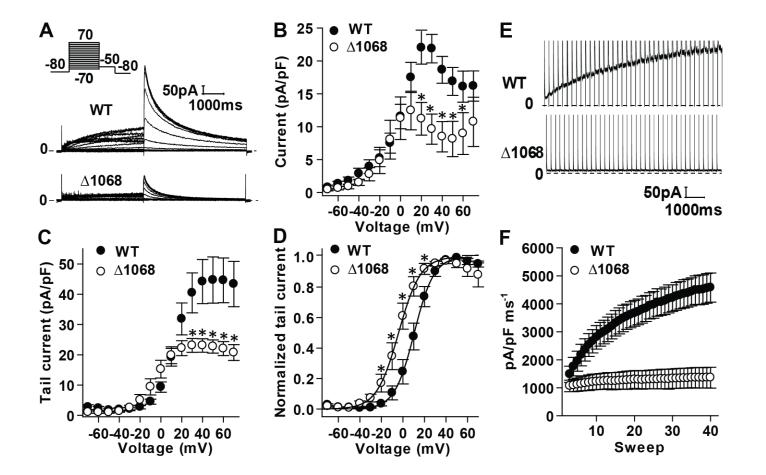


	ID:008579218		24-FEB-2017 13:30:59	BETH ISRAEL HOSPITAL-DM	ROUTINE RETRIEVAL
Vent. rate PR interval QRS duration QT/QTc P-R-T axes	124	ms ms	NORMAL SINUS RHYTHM PROLONGED QT INTERVAL OR IMBALANCE, OR DRUG EFFECT ABNORMAL ECG NO PREVIOUS ECGS AVAILABL Confirmed by MISRA, DEEPIKA (2)	E	SEASE, ELECTROLYTE

Comment:

The QT-interval was prolonged at baseline and was prolonged in the recovery phase, with a QT of 370 msec and a QTc of 638 msec in minute-4 of recovery: patients with a QTc \ge 480 msec at minute-4 of recovery have been shown to have a high likelihood of having LQT1 or LQT2.¹

Case 1 - Additional Studies


Family Study (Dr. Marina Cerrone at NYU) De novo

LEGEND

Results Table						
Gene	Variant (cDNA, genome	Variant (protein)	Zygosity	Classification		
	on Assembly GRCh37)			•		
KCNH2	NM_000238.3:c.3202C>T	NP_000229.1: p.Gln1068Ter	Heterozygous	Likely Pathogenic		
	g.7:150644093G>A	(nonsense variant)				
CACNA2D1	NM_000722.2:c.2070T>G	NP_000713.2: p.Ile690Met	Heterozygous	Variant of		
	g.7:81601164A>C	(missense variant)		Uncertain		
				Significance (VUS)		

Case 1 – Functional Studies

Comparison of the Healthcare for Surviving Family Members With and Without Molecular Autopsy

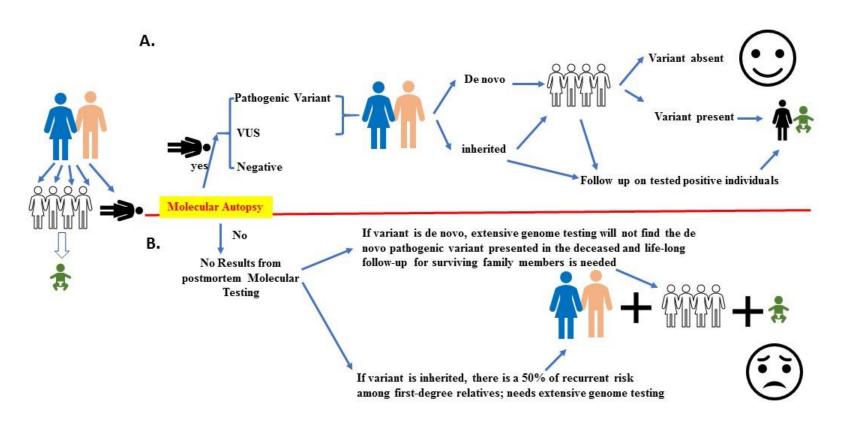


Figure 3: Comparison of the Healthcare for Surviving Family Members With and Without Molecular Autopsy

Myocarditis and a Coexisting LQT variant

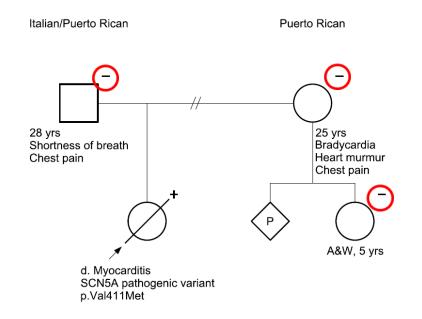
Myocarditis and a Coexisting Pathogenic LQT variant

• 5-year-old Hispanic girl with mild asthma found unresponsive in bed.

CAUSE OF DEATH: MYOCARDITIS OF PROBABLE VIRAL ETIOLOGY.

MANNER OF DEATH: NATURAL.

We tested 95-cardiac-gene panel

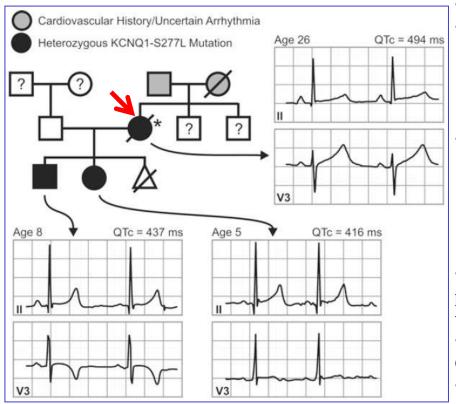

	Results Table						
Gene	Variant (cDNA, genome on Assembly GRCh37)	Variant (protein)	Zygosity	Classification			
SCN5A	NM_198056.2:c.1231G>A g.3:38647549C>T	NP_932173.1: p.Val411Met (missense variant)	Heterozygous	Pathogenic			

The variant has been reported 5 separate times as a pathogenic variant in ClinVar. This variant had been published in literature in several unrelated patients with LQTS. In vitro study supported the function defects of the sodium channel with the p.Val411Met change. The variant is not found in large population databases. Multiple in silico variant effect analyses consistently predict the deleterious effect of this variant.

Sample ID	<u>Receiving</u> <u>date</u>	<u>Sample</u> <u>Type</u>	Adeno	CMV	EBV	Parvo	HHV6	RSV	Entero	Influenza	HCV	
FBMG14-0402	9/7/2016	Heart	-	-	-	+	-	-	-	-	-	

Recurrent, de novo LQT Variant in Myocarditis

De novo in this case

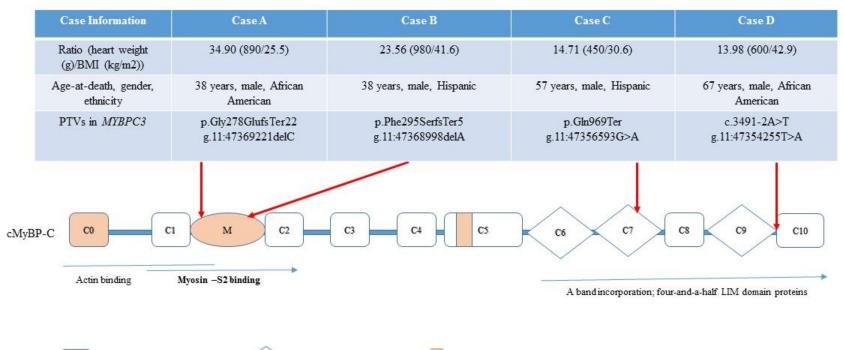

- It is a recurrent, de novo variant : This variant was found to be absent from parental testing and therefore suspected to have occurred de novo in two unrelated individuals with LQTS (Carrasco et al., 2012; Stattin et al., 2012).
- Implication of testing cardiac genes in Myocarditis: triggering or compounding effect?

Cocaine Intoxication and a Coexisting LQT1 Variant

Cocaine Intoxication and a Coexisting LQT1 Variant

Chen (2011) Pacing Clin Electrophysiol 34: 1652

- A 26-year-old Hispanic female sudden collapse at home
- Postmortem toxicology study revealed
 - ethanol 0.01g%
 - cocaine (0.06 mg/L) and cocaine derivatives (ethylbenzoylecgonine 0.16 mg/L benzoylecgonine 1.0 mg/L) in her serum
- springtime of the following year, her husband took the two kids to visit the cardiologist at Montefiore. Her past medical: she referred for cardiac evaluation after a prolonged QT interval was noted on a screening ECG obtained during a preoperative assessment for umbilical hernia repair.
- She reported having a syncopal episode preceded by dizziness at age 10, and another episode several weeks prior to her cardiac evaluation
- ECG revealed normal sinus rhythm with a variable resting QTc duration (maximal recorded resting QTc =494 ms)
- OCME tested and found a pathogenic LQT1 variant in
- two young children resting QTc intervals for the children were not prolonged; A treadmill test was performed, both children exhibiting prolonged QTc at 2 min 40 sec recovery
- Both children carry the variant



Four HCM Cases – Genotype/Phenotype Observation

Four HCM Cases (A to D) – Genotype/Phenotype Observation

Figure 1. Correlate HCM phenotype with Genotype of Predicated Protein-truncating Variants Located in the cMyBP-C Protein

Utility of Testing 95-cardiac genes in Autopsy Negative Sudden Natural Death

Testing Yield in Autopsy Negative Cases (276 Cases)

By Age

By Ethnicity

Circ Cardiovasc Genet. 2017;10:e001839. DOI: 10.1161/CIRCGENETICS.117.001839

>50% cases remained negative after the 95-cardiac-gene testing

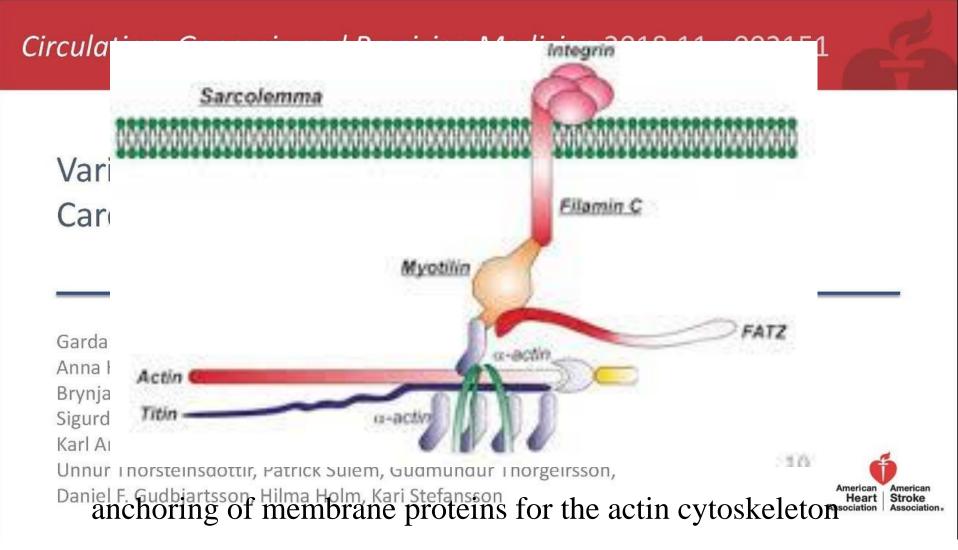
Current Test Menu (Since July 2019)

TEST NAME	DESCRIPTION
Cardiac-focused Sudden Death Molecular Analysis (Panel A)	Total 137 genes: cardiovascular system conditions (cardiomyopathies, cardiac channelopathy, pulmonary arterial hypertension), and non-cardiac channelopathy (Bartter/Gitelman's syndrome, familial hyperinsulinism)
Epilepsy-focused Sudden Death Molecular Analysis (Panel B)	Total 132 genes: associated with epilepsy (12 channel genes are in both Panel A and Panel B)
Cardiac & Epilepsy Sudden Death Molecular Analysis (Panel C)	Total 257 genes: Panel A +Panel B
Aortopathy Analysis	19 genes associated with aortic aneurysms and dissections
Malignant Hyperthermia Susceptibility Analysis	2 genes associated with malignant Hyperthermia Susceptibility
Thrombophilia Analysis	3 genes for anticoagulants (<i>SERPINC1, PROS1, PROC</i>) and 2 SNPs (<i>FVL and FII G20210A</i>)
Sickle Cell Disease Analysis	Hemoglobin S and C

Results of Testing Panel A (August – November 2019)

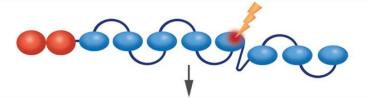
Cases	# Cases	Percentage of Total
# Cases with P/LP	5	11%
# Cases with VUS	26	59%
# Cases with B/LB	13	30%
Total # Cases Tested	44	100%

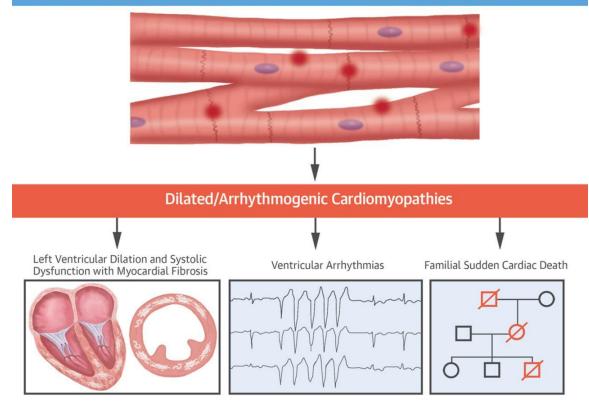
Cases with P/LP Variants


Case	Demograp hic of Decedent	ME	Molecular Finding	Condition	Comment s
19MG0089	23y, Male, White	Hayes	FLNC, LP	Arrhythmoge nic	Not on 95 gene
				Cardiomyopa thy (AC)	panel
18MG0236	51y, Female, Black	Smiddy; Slone	PKP2, P	AC	On 95 gene panel
19MG0265	33y, Female, White	Drobyshe va; Slone	JUP, LP	AC	On 95 gene panel
19MG0314	13y, Male, Hispanic	Kelly	RYR2, LP RYR2, VUS;	CPVT	On 95 gene panel

FLNC Gene Encodes Gamma Filamin

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY


VOL. 68, NO. 22, 2016


Possible Mechanism

Truncating FLNC Mutation Produces an Abnormal Protein

Alteration of Intercalated Disks and Costameres Weakens Myocytes' Adhesion

Source: Journal of the American College of Cardiology

Case Example - FLNC Variant

	Results Table						
Gene	Variant (cDNA, genome on Assembly GRCh37)	Variant (protein)	Zygosity	Classification			
FLNC	NM_001458.4:c.1565delC g.7:128480617delC	NP_001449.3: p.Pro522GlnfsT er2 (frameshift)	Heterozygous	Likely Pathogenic			

Novelty: the variant is novel; parental studies can help to determine if this novel variant arose *de novo*.

Variant type, zygosity, or function domain: deletion, frameshift, heterozygous This variant is a single nucleotide deletion at c.1565delC, leading to amino acid change at position 522 from Proline to Glutamine, and a premature stop codon at codon number 2 into the new reading frame (p.Pro522GlnfsTer2). Compared to the total 2725 amino acids of the wild-type *FLNC* encoded protein, this variant is expected to lead to a truncated protein product.

Current Staff in MG Lab

Sung Yon U. Dawei W. Bo Z. Lucy E. Ying L. Nori W.

Kevin R.

Yingying T<mark>.</mark>

Lisa R.

OCME's Partner Programs

Clinical Programs:

- Dr. Tom McDonald at Montefiore/Einstein
- Dr. Wendy Chung at Columbia University
- Dr. Mark Sherrid at NYU (cardiomyopathy, HCM)

Functional Studies

- Dr. William Coetzee at NYU
- Dr. Tom McDonald at Einstein
- Dr. Marina Cerrone/Mario Delmar at NYU
- Exome/genome testing (cohort vs. controls burden test)
 - Dr. David Goldstein at Columbia University

Objectives Review

- 1.Define sudden cardiac death and describe which deaths are most appropriate for molecular testing.
- 2.Explain the current techniques and analysis available for the molecular autopsy, including their limitations.
- 3. Integrate the results of the molecular autopsy into the final determination of cause and manner of death and family counseling.

