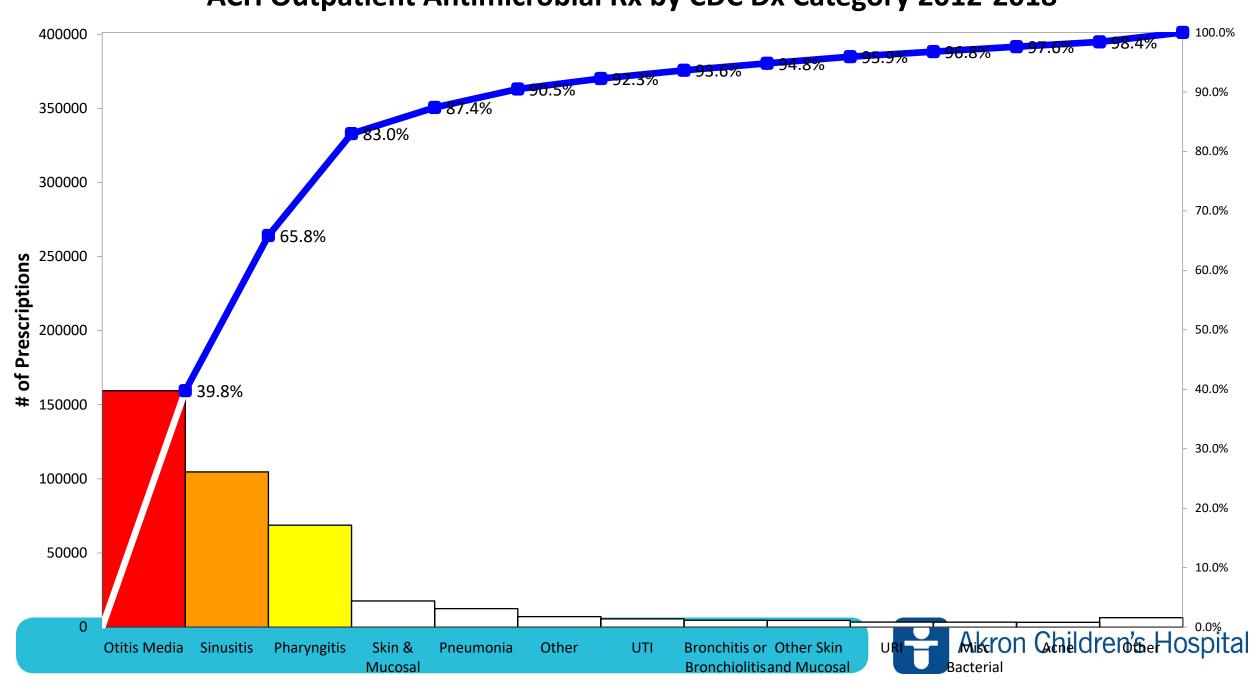


Management of Acute Otitis Media Updates

Fall APP Pharmacology Conference 2023


Eric Robinette

Objectives

- Identify appropriate patients with AOM for watchful waiting
- Understand systems strategies to improve uptake of watchful waiting
- Prescribe appropriate empirical therapy for acute otitis media in children
- Prescribe appropriate second line therapy
- Use a systematic framework for evaluating treatment failure
- Know the indications for Nirsevimab and how it may affect disease in children
- Explain the indications and rationale for the COVID-19 vaccine and 2023-24 booster to patients

ACH Outpatient Antimicrobial Rx by CDC Dx Category 2012-2018

AOM – When to Treat

AAP Guidelines

- Immediate Treatment
- Severe AOM
 - Fever >39C
 - Moderate to Severe Pain
 - Pain > 48 hours
- Bilateral AOM in 6 months 2 years
- All rest use shared decision making on antibiotics vs expectant management

Otitis Media is virus-related

- Children aged 1-3 years
 - <1% of otitis media episodes were not preceded by URI symptoms</p>
 - 32% of URI episodes complicated by AOM
 - 70% of the time virus could be recovered
 - Adenovirus uniquely high AOM rate
 - Rhinovirus uniquely low AOM rate
- Effects of antibiotic treatment are limited
- Most cases are probably viral

How are we doing with watchful waiting?

- Retrospective Cohort Study
- Children aged 1-12 in claims database
- Outcome: % of AOM episodes w/ antibiotic dispense w/in 3 days
- Key Findings:
 - 77% were treated w/in 3 days
 - No change in treatment prevalence over time
 - Strongest predictors of prescribing were provider characteristics
 - Previous prescribing
 - Specialty

How are we doing with watchful waiting?

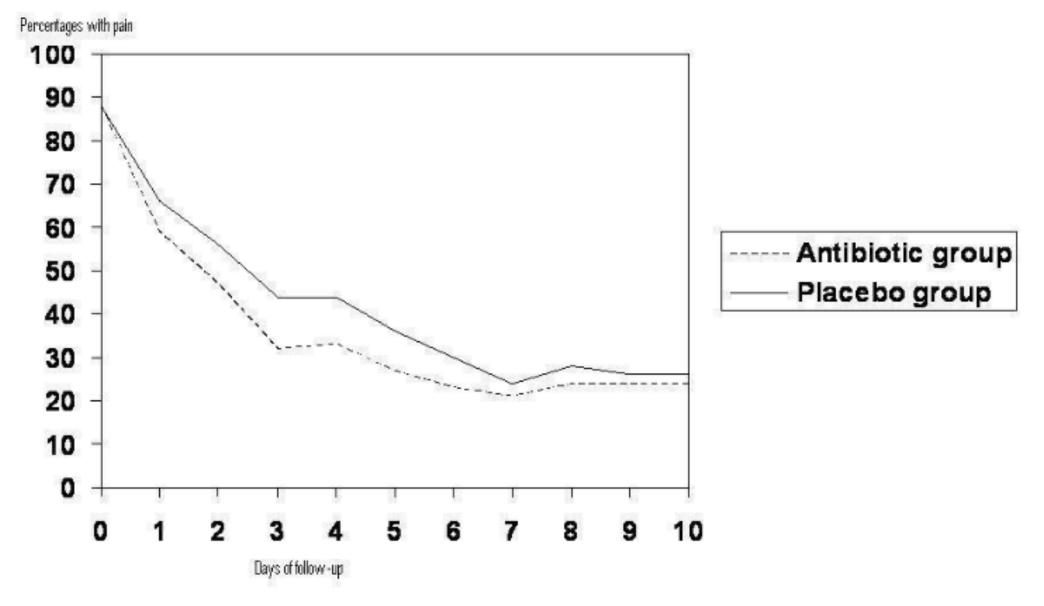
- Retrospective cohort study
 - Israel
 - Claims data
- Outcome: Antibiotic treatment w/in 2 days of visit
 - ~80% immediate treatment
 - Antibiotic prescribing rates increased after issue of guidelines

How much do antibiotics really help?

- Cochrane 2015
 - Systematic Review & Meta-Analysis
 - 13 RCTs
 - 2 months to 13 years
 - Assessed as low-risk of bias

How much do antibiotics really help?

- Antibiotics VS Placebo⁴
 - Reduced pain at 24 hours? RR:0.89 (0.78-1.01)
 - Reduced pain at 2-3 days? RR: 0.7 (0.57-0.86) NNTB: 20
 - Reduced pain at 4-7 days? RR: 0.76 (0.63-0.91) NNTB: 16
 - Reduced pain at 10-12 days? RR: 0.33 (0.17-0.66) NNTB: 7
 - Abnormal TM 2-4 weeks? RR: 0.82 (0.74-0.90) NNTB: 11
 - Abnormal TM 3 months? RR: 0.97 (0.76-1.24)
 - TM Perforation? RR: **0.63** (0.24-0.82) NNTB: 33
 - Contralateral otitis? RR: **0.51** (0.05-0.75) NNTB: 11
 - Vomiting, diarrhea, or rash? RR: 1.38 (1.19 to 1.59) NNTH: 14


How much do antibiotics really help?

- Other Outcomes
 - Recurrences? No data
 - Serious Complications? Insufficient evidence, but quite rare

How much to antibiotics really help?

- VS Expectant Observation
 - Pain at 3-7 days? RR: 0.75 (0.5 1.12)
 - Pain at 11-14 days? RR: 0.91 (0.75 1.10)
 - Vomiting, diarrhea, or rash? RR: 1.71 (1.24-2.36) NNTH: 9
 - Rare complications additional data (Djabali⁴)
 - Meta-analysis of 6 studies
 - Mixed placebo and expectant observation comparators
 - Mastoiditis OR: 0.48 NNTB: 5368

Figure 6. Percentage with pain based on the subset of six studies included in the IPD meta-analysis (Rovers 2006).

Antibiotics helped more in these subpopulations?

- Children < 2 years of age
- Children with bilateral AOM
- Children with ear discharge

So why don't we use watchful waiting?

- 83% "reasonable"
- 83% cited parental reluctance
- 30% cited difficulty and cost of follow up

Evidence to Practice

Sun et al • Pediatric Quality and Safety (2019) 4:3;e177

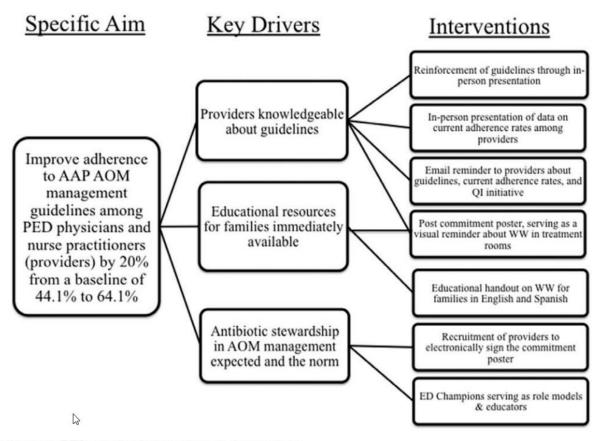


Fig. 2. Key driver diagram. PED, pediatric emergency department.

Current Trends in Otitis Media Pathogens

- Overall AOM incidence
 - Declining
 - Timing c/w effect from PCV vaccines
 - Reduction in middle ear colonization with PCV strains
 - Mostly attributable to decline in *S. pneumoniae* infections
- Shift toward increased H. flu burden

What bacteria cause AOM?

Bacteriology of Acute Otitis Media*

Bacterial Species	Prevalence (%) 1999	Prevalence (%) 2017	
Streptococcus pneumoniae	40-45	15-25	
Haemophilus influenzae	25-30	50-60	
Moraxella catarrhalis	12-15	12-15	
Streptococcus pyogenes	3-5	3-5	
Sterile ⁺	15-20	15-20	

S. Pneumo: PCN-I 25%; PCN-R 0%

H. Flu BLAM+L: 30-50%

100% M. Cat BLAM+: 100%

Current Treatment Recommendations

Acute Otitis Media

- First Line High-dose Amoxicillin
 - 90 mg/kg divided BID x 10 days
 - Max dose: 2000 mg/dose
- Risk Factors For Amoxicillin/Clavulanic Acid
 - Receipt of Amoxicillin in previous 30 days
 - Conjunctivitis
 - Treatment failure of amoxicillin

Acute Otitis Media

- Alternative for (+) risk factors
 - High-dose amox/clav 90 mg/kg divided BID x 10 days
 - Utilize amox/clav ES suspension or amox/clav XR tabs for high-dose therapy
 - Max amox/clav XR dose: 2000 mg/dose
 - Max amox/clav ES susp dose: 1800 mg/dose
- PCN allergy (non-life threatening)
 - Cefdinir 14 mg/kg/day divided BID x 10 days
 - Max dose: 300 mg/dose
 - Consider adding Clindamycin if PCN-resistant Strep. pneumoniae concern

Why?

- Different mechanisms of resistance
 - Streptococcus pneumoniae Altered penicillin binding proteins
 - Haemophilus influenzae Beta-lactamase
 - Moraxella catarrhalis Beta-lactamase
- "High-dose"
 - Intended to overcome altered PBP
- Beta-lactamase stable
 - E.g., suicide inhibitors and cephalosporins
 - Intended to overcome beta-lactamase

Selection of Empirical Antibiotics

Beta-Lactam Antibiotic	S. Pneumo	H. Flu	M. Cat
SD-Amox	75%	50-70%	0%
HD-Amox	100%	50-70%	0%
SD-Amox/Clav	75%	100%	100%
HD-Amox/Clav	100%	100%	100%
Cefdinir	75%	100%	100%

An alternative approach?

- SD-Amox/Clav would likely cover a > % of organisms than HD-Amox
- Assumptions:
 - H. Flu BLAM rate is ~50%
 - No difference in rates of self-resolution by pathogen
 - No difference in rates of adverse effects between Amox/Clav and Amox

Considerations:

- H. Fly BLAM rate may be lower in some places (closer to 30%)
- Self-resolution is much more common with H. Flu and M. Cat
- Adverse effects are likely higher for Amox/Clav vice Amox
- No evidence that high-dose amox component has higher AE rate

In Context:

- Broad empirical therapy generally causes increased antimicrobial resistance
- High NNT w/ poor adoption of judicial prescribing
- Highest indication for antimicrobial rx in pediatrics

Age Dependent Durations - <24 months

Patient Population

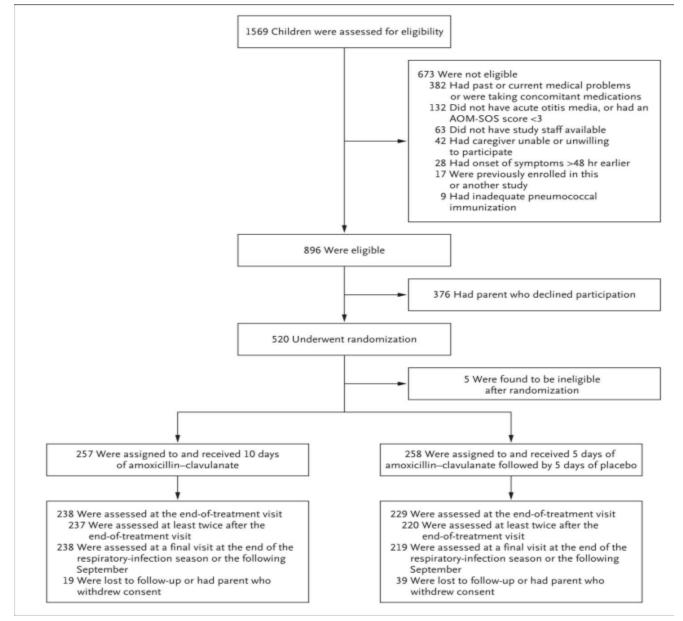
- 6-11 months
- 12-17 months
- 18-23 months
- Day care exposure (≥10 hrs/week

Intervention

- 10 days highdose amox/clav
- 5 days highdose amox/clav + 5 days placebo

Primary Outcome

 % children who had clinical failure


Secondary Outcomes

- Symptom burden days 6-14
- Rates of recurrence
- Total days of therapy during resp season

Study Follow-Up

- Telephone encounters with parents
 - Completed days 4, 5, or 6
- End of treatment visit
 - Completed days 12, 13, or 14
- In-office assessments q6weeks through the end of respiratory season (October 1 – May 31)
- Parents recorded AOM symptom scores daily during treatment period

Results – Clinical Failure

Characteristic	10 Day Group (n=257)	5 Day Group (n=258)	All Children (n=515)	Odds Ratio (95% CI)	P value
All Children, n (%)	39/238 (16)	77/229 (25)	116/467 (25)	n/a	
≥ 10 hrs/week exposure to kids No Yes	13/101 (13) 26/137 (19)	24/96 (25) 53/133 (40)	37/197 (19) 79/270 (29)	1.7 (1.1-2.7)	0.02
# affected ears One Both	10/124 (8) 29/114 (25)	26/113 (23) 51/116 (44)	36/237 (15) 80/230 (35)	2.9 (1.9-4.7)	<0.001

Discussion

- Standard 10 day treatment for AOM in children <24 months had less clinical failure compared to 5 day treatment regimens
- Previous studies also found higher failure rates for short courses of therapy in this age group
 - Cochrane Review in 2010
- Utilized amox/clav as first line therapy

Age Dependent Durations - >24 months

- 2-5 yrs w/mild to moderate AOM 7 days
- ≥6 yrs w/mild to moderate AOM 5-7 days
- Shorter durations for older ages debated across centers/states/countries
 - Older children more likely spontaneously resolve
 - Less likely for treatment failure

The Four "D's"

- A framework for evaluating treatment failure
- Right Diagnosis
- Right Drug
- Right Dose
- Right Duration

Summary and Key Points

- Rigorous clinical diagnosis is important
- Do watchful waiting in appropriate groups
 - Personal changes
 - Systems changes
- HD Amox is still recommended 1st line therapy
- Remember B-lactamase stability does not help with S. Pneumo
- NNT is high, benefits are modest minimize harms

An ounce of prevention...

Nirsevimab - Background

- Monoclonal ab targeting a conserved site on the pre-fusion RSV Fprotein
 - Hopefully evades antigenic shift/drift
- A portion of the Fc receptor is modified so that the body recycles it
 - Long acting
 - Up to 6 months

Nirsevimab – Clinical Data

- Population: Infants 29-35 weeks GA; 1st RSV season; n=1453
- Intervention: Nirsevimab (2:1)
- Comparison: Placebo
- Outcome:
 - Primary: Medically attended LRTI: RRR 70.1% (52.3%, 81.2% 95%CI)
 - Secondary: RSV Hospitalization: RRR **78.4%** (51.9-90.3 95%CI)
 - Outcomes through 150 days post-administration

Nirsevimab – Clinical Data

- Population: All Infants
 - France, Germany, UK
 - August 2022-Feb 2023
 - N=8058
- Intervention: Nirsevimab
- Comparison: No Injection
- Outcomes:
 - Primary: RSV Hospitalization: RRR 83% (68%-92% 95%CI)

Nirsevimab: AEs

- No difference in Grade II-IV AE compared to placeboa
- Grade I AE > in Nirsevimab arms
- Consistent across studies
- AE with occurrence > placebo
 - Rash ~1%
 - Injection site reaction ~0.3%

Current ACIP Nirsevimab Recommendations

- Populations in whom recommended:
 - All infants < 8 months
 - Infants 8-19 months at increased risk of RSV hospitalization
 - CLD of prematurity
 - Severe Immune compromise
 - Certain CF
 - American Indian or Alaskan Native
- Timing
 - Born October March w/in 1 week of birth
 - Ideally prior to nursery D/C
 - For NICU at/immediately prior to D/C
 - Born outside RSV season at onset of season (~October)

COVID-19 Current Pediatric Hospitalization Trends

- 54% of children hospitalized with no underlying medical conditions
- Underlying medication conditions more common > 5 years of age
- Post pandemic:
 - Hosp rates: Similar to influenza for < 5 years of age
 - Lower than influenza for older children
- ICU admission rates slightly exceed influenza
- Being unvaccinated or not recently vaccinated clearly high-risk

COVID-19 Vaccine Updates

- Current circulating virus are subsets of XBB1.55
 - Omicron sub-variant
 - Very few mutations in spike protein
 - XBB1.55 (2023 vaccine) sera neutralizes all major variants well
- New variant BA 2.86 with more mutations
 - Not circulating at a high level
 - Preliminary XBB.155 vaccine and disease sera shows good neutralization
- Conclusion: XBB1.55 vaccines are expected to be effective against currently circulating variants

COVID-19 Current Vaccine Recommendations

What You Need to Know

- CDC recommends the 2023–2024 updated COVID-19 vaccines.
- Everyone aged 5 years and older should get 1 dose of the updated Pfizer-BioNTech or Moderna COVID-19 vaccine to protect against serious illness from COVID-19.
- <u>People who are moderately or severely immunocompromised</u> may get additional doses of updated COVID-19 vaccine.
- <u>Children aged 6 months-4 years</u> need multiple doses of COVID-19 vaccines to be <u>up to date</u>, including at least 1 dose of updated COVID-19 vaccine.
- COVID-19 vaccine recommendations will be updated as needed.

Questions?